Enabling Civilian Low-Altitude Airspace and Unmanned Aerial System (UAS) Operations

By

Unmanned Aerial System Traffic Management (UTM)

Parimal Kopardekar, Ph.D.

UTM Principal Investigator and Manager, NextGen Concepts and Technology Development Project

NASA

Parimal.H.Kopardekar@nasa.gov

June 19, 2014

Aviation 2014, Atlanta, Georgia
Unmanned Aerial Systems Traffic Management (UTM)

- Many civilian applications of Unmanned Aerial System (UAS) are being considered
 - Humanitarian
 - Goods delivery
 - Agricultural services
 - Strategic assets surveillance (e.g., pipelines)
- Many UAS will operate at lower altitude (Class G, 2000 Feet)
 - Other low-altitude uses such as personal vehicles are emerging
- No infrastructure to safely support these operations is available
- Global interest (e.g., Australia, Japan, France, United Kingdom, Europe)
- Lesson from History: Air Traffic Management started after mid-air collision over Grand Canyon in 1956
- Need to have a system for civilian low-altitude airspace and UAS operations

UTM will enable low-altitude airspace operations
UTM Applications

NOTIONAL SCENARIO

• **Near-term Goal** – Initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years
• **Long-term Goal** – UAS operations with highest safety and overall airspace efficiency to accommodate increased demand (10-15 years)
UTM Design Functionality

• UAS operations will be safer if a UTM system is available to support the functions associated with
 – Airspace management and geo-fencing (reduce risk of accidents, impact to other operations, and community concerns)
 – Weather and severe wind integration (avoid severe weather areas based on prediction)
 – Predict and manage congestion (mission safety)
 – Terrain and man-made objects database and avoidance
 – Maintain safe separation (mission safety and assurance of other assets)
 – Allow only authenticated operations (avoid unauthorized airspace use)

• Analogy: Self driving or person driving a car does not eliminate roads, traffic lights, and rules

• Missing: Infrastructure to support operations at lower altitudes
Near-term UTM Builds Evolution

<table>
<thead>
<tr>
<th>UTM Build</th>
<th>Capability Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTM1</td>
<td>Trajectory Manager: Planning and tracking</td>
</tr>
<tr>
<td></td>
<td>• Geo-fencing and airspace design</td>
</tr>
<tr>
<td></td>
<td>• Open and close airspace decision based on the weather/wind forecast</td>
</tr>
<tr>
<td></td>
<td>• Altitude Rules of the road for procedural separation</td>
</tr>
<tr>
<td></td>
<td>• Basic scheduling of vehicle trajectories</td>
</tr>
<tr>
<td></td>
<td>• Terrain/man-made objects database to verify obstruction-free initial trajectory</td>
</tr>
</tbody>
</table>

UTM2	Make dynamic adjustments and contingency management
	• All functionality from build 1
	• Dynamically adjust availability of airspace
	• Demand/capacity imbalance prediction and adjustments to scheduling of UAS where the expected demand very high
	• Management of contingencies – lost link, inconsistent link, vehicle failure
Near-term UTM Builds Evolution

<table>
<thead>
<tr>
<th>UTM Build</th>
<th>Capability Goal</th>
</tr>
</thead>
</table>
| **UTM3** | Manage separation/collision by vehicle and/or ground-based capabilities
• All functionality from build 2
• Active monitoring of the trajectory conformance inside geo-fenced area and any dynamic adjustments
• UTM web interface, which could be accessible by all other operators (e.g., helicopter, general aviation, etc.)
• Management of separation of heterogeneous mix (e.g., prediction and management of conflicts based on predetermined separation standard) |
| **UTM4** | Manage large-scale contingencies
• All functionality of build 3
• Management of large-scale contingencies such as “all-land” scenario |
Summary

• Goal is to safely enable initial low-altitude operations within 1-5 years
• Strong support for UTM system research and development
• Partnerships in development, testing, and transfer of UTM to enable low altitude operations

Parimal.H.Kopardekar@nasa.gov
Airspace Classification

Class A
18,000' MSL

Class B

Class C

Class D

Class E

14,500' MSL

Nontowered airport with instrument approach

1,200' AGL
700' AGL

1,200' AGL
700' AGL

1,200' AGL
700' AGL

Nontowered airport with no instrument approach

Source: Pilot’s Handbook of Aeronautical Knowledge, FAA
Operator Perspective:
Low-altitude Airspace Operations

- Is airspace open or closed now and in the near-future?
- Which airspace they can operate, which airspace they should avoid?
- Will there be anyone else in the vicinity?
 - UAS, gliders, helicopters, and general aviation
- What should I do if I need to change my trajectory?
- How to manage a contingency?
- Who should operate the airspace and how?
UTM – One Design Option

Multiple customers
With diverse mission needs/profiles

Range of UAVs from disposable to autonomous

UAS 1
- Autonomicity:
 - Self Configuration
 - Self Optimization
 - Self Protection
 - Self Healing
 - Operational data recording

UAS 2
- Authentication
- Airspace design and geo fence definition
- Weather integration
- Constraint management
- Sequencing and spacing
- Trajectory changes
- Separation management
- Transit points/coordination with NAS
- Geofencing design and adjustments
- Contingency management

UAS 3

UAS n

Low altitude CNS options such as:
- Low altitude radar
- Surveillance coverage (satellite/ADS-B, cell)
- Navigation
- Communication

Real-time Wx and wind

Wx and wind Prediction

Airspace Constraints

3-D Maps:
Terrain, human-made structures

Other low-altitude operations

Transition between UTM and ATM airspace

Constraints based on community needs about noise, sensitive areas, privacy issues, etc.

Constraints based on community needs about noise, sensitive areas, privacy issues, etc.
User Access to UTM

- Cloud-based: user accesses through internet
- Generates and files a nominal trajectory
- Adjusts trajectory in case of other congestion or pre-occupied airspace
- Verifies for fixed, human-made, or terrain avoidance
- Verifies for usable airspace and any airspace restrictions
- Verifies for wind/weather forecast and associated airspace constraints
- Monitors trajectory progress and adjust trajectory, if needed (contingency could be someone else’s)
- Supports contingency – rescue
- Allocated airspace changes dynamically as needs change
UTM Manager

- Airspace Design and Dynamic Adjustments
 - Right altitude for direction, geo-fencing definition, community concerns, airspace blockage due to severe weather/wind prediction or contingencies
 - Delegated airspace as the first possibility

- Support fleet operations as well as singular operators (analogy - airline operations center and flight service stations)

- Overall schedule driven system to ensure strategic de-conflictions (initially, overtime much more dynamic and agile)

- Management by exception
 - Operations stay within geo-fenced areas and do not interrupt other classes of airspace operations in the beginning stages
 - Supports contingency management
Near-term UTM Builds Evolution

<table>
<thead>
<tr>
<th>UTM Build</th>
<th>Capability Goal</th>
</tr>
</thead>
</table>
| **UTM1** | Mostly show information that will affect the UAS trajectories
• Geo-fencing and airspace design
• Open and close airspace decision based on the weather/wind forecast
• Altitude Rules of the road for procedural separation
• Basic scheduling of vehicle trajectories
• Terrain/man-made objects database to verify obstruction-free initial trajectory |
| **UTM2** | Make dynamic adjustments and contingency management
• All functionality from build 1
• Dynamically adjust availability of airspace
• Demand/capacity imbalance prediction and adjustments to scheduling of UAS where the expected demand very high
• Management of contingencies – lost link, inconsistent link, vehicle failure |
Near-term UTM Builds Evolution

<table>
<thead>
<tr>
<th>UTM Build</th>
<th>Capability Goal</th>
</tr>
</thead>
</table>
| UTM3 | Manage separation/collision by vehicle and/or ground-based capabilities
 - All functionality from build 2
 - Active monitoring of the trajectory conformance inside geo-fenced area and any dynamic adjustments
 - UTM web interface, which could be accessible by all other operators (e.g., helicopter, general aviation, etc.)
 - Management of separation of heterogeneous mix (e.g., prediction and management of conflicts based on predetermined separation standard) |
| UTM4 | Manage large-scale contingencies
 - All functionality of build 3
 - Management of large-scale contingencies such as “all-land” scenario |
Summary

- Goal is to safely enable initial low-altitude operations within 1-5 years
- Strong support for UTM system research and development
- Partnerships in development, testing, and transfer of UTM to enable low altitude operations

Parimal.H.Kopardekar@nasa.gov